Macros | |
#define | Mat3toMat4(a, b) |
#define | Mat4Add(a, b, c) |
#define | Mat4Blend(m1, m2, b, m) |
#define | Mat4CompMult(a, b, c) |
#define | Mat4Copy(a, b) |
#define | Mat4Expand(a) |
#define | Mat4Identity(a) |
#define | Mat4MultAdd(a, s, b, c) |
#define | Mat4Scale(a, b, c) |
#define | Mat4Subtract(a, b, c) |
#define | Mat4Trace(a) ((a)[0] + (a)[5] + (a)[10] + (a)[15]) |
#define | Mat4Zero(a) memset ((a), 0, 16 * sizeof (a)[0]) |
Functions | |
void | Mat4as3MultVec (const mat4_t a, const vec3_t b, vec3_t c) |
int | Mat4Decompose (const mat4_t mat, quat_t rot, vec3_t shear, vec3_t scale, vec3_t trans) |
Decompose a 4x4 column major matrix into its component transformations. More... | |
void | Mat4Init (const quat_t rot, const vec3_t scale, const vec3_t trans, mat4_t mat) |
int | Mat4Inverse (const mat4_t a, mat4_t b) |
void | Mat4Mult (const mat4_t a, const mat4_t b, mat4_t c) |
void | Mat4MultVec (const mat4_t a, const vec3_t b, vec3_t c) |
void | Mat4Transpose (const mat4_t a, mat4_t b) |
#define Mat3toMat4 | ( | a, | |
b | |||
) |
#define Mat4Add | ( | a, | |
b, | |||
c | |||
) |
#define Mat4Blend | ( | m1, | |
m2, | |||
b, | |||
m | |||
) |
#define Mat4CompMult | ( | a, | |
b, | |||
c | |||
) |
#define Mat4Copy | ( | a, | |
b | |||
) |
#define Mat4Expand | ( | a | ) |
#define Mat4Identity | ( | a | ) |
#define Mat4MultAdd | ( | a, | |
s, | |||
b, | |||
c | |||
) |
#define Mat4Scale | ( | a, | |
b, | |||
c | |||
) |
#define Mat4Subtract | ( | a, | |
b, | |||
c | |||
) |
#define Mat4Trace | ( | a | ) | ((a)[0] + (a)[5] + (a)[10] + (a)[15]) |
#define Mat4Zero | ( | a | ) | memset ((a), 0, 16 * sizeof (a)[0]) |
Decompose a 4x4 column major matrix into its component transformations.
This gives the matrix's rotation as a quaternion, shear (XY, XZ, YZ), scale, and translation. Using the following sequence will give the same result as multiplying v by mat.
QuatMultVec (rot, v, v); VectorShear (shear, v, v); VectorCompMult (scale, v, v); VectorAdd (trans, v, v);